Kyoto University Institute for the
Advanced Study of Human Biology





李 聖林 ASHBi主任研究者らの論文「The optimal strategy of incompatible insect technique (IIT) using Wolbachia and the application to malaria control」が国際学術誌『Journal of Theoretical Biology』に掲載されました(2023年4月30日オンライン公開)。


  • Incompatible Insect Technology (IIT) with Wolbachia takes advantage of nature.
  • A mathematical model of IIT and its hybrid model with malaria are developed.
  • The effectiveness of IIT is evaluated quantitatively by applying mathematical measures.
  • An optimal strategy for suppressing mosquitoes is suggested based on a release cost.
  • IIT is a promising method to control malaria without eliminating mosquitoes altogether.


For decades, techniques to control vector population with low environmental impact have been widely explored in both field and theoretical studies. The incompatible insect technique (IIT) using Wolbachia, based on cytoplasmic incompatibility, is a technique that Wolbachia-infected male mosquitoes are incapable of producing viable offspring after mating with wild-type female mosquitoes. While the IIT method experimentally ensured its effectiveness in several field works, the failure of female mosquito population control by replacement owing to the accidental contamination of Wolbachia-infected female mosquitoes has been a concern and an obstacle in implementing the IIT method in nature. In this study, we develop a population-based IIT mathematical model using cytoplasmic incompatibility and evaluate the effectiveness of the IIT method in scenarios where contamination is present or absent. In addition, by extending the model to assess the disease infection status of the human population with malaria, we evaluate the optimal release strategy and cost for successful disease control. Our study proves that IIT could be a promising method to control mosquito-borne diseases without perfect suppression of vector mosquito population regardless of contamination.


Matsufuji, T., & Seirin-Lee, S. (2023). The optimal strategy of incompatible insect technique (IIT) using Wolbachia and the application to malaria control. Journal of Theoretical Biology, 111519.