1. Bondarenko, V., Nikolaev, M., Kromm, D., Belousov, R., Wolny, A., Blotenburg, M., Zeller, P., Rezakhani, S., Hugger, J., Uhlmann, V., Hufnagel, L., Kreshuk, A., Ellenberg, J., van Oudenaarden, A., Erzberger, A., Lutolf, M. P., & Hiiragi, T. (2023). Embryo-uterine interaction coordinates mouse embryogenesis during implantation. The EMBO journal, 42(17), e113280.LINK
  2. Prachiti Moghe, Roman Belousov, Takafumi Ichikawa, Chizuru Iwatani, Tomoyuki Tsukiyama, François Graner, Anna Erzberger, Takashi Hiiragi. Apical-driven cell sorting optimised for tissue geometry ensures robust patterning. bioRxiv (2023)LINK
  3. Fabrèges, D., Murtra, B. C., Moghe, P., Kickuth, A., Ichikawa, T., Iwatani, C., Tsukiyama, T., Daniel, N., Gering, J., Stokkermans, A., Wolny, A., Kreshuk, A., Duranthon, V., Uhlmann, V., Hannezo, E., & Hiiragi, T. Temporal variability and cell mechanics control robustness in mammalian embryogenesis. bioRxiv (2023).LINK


  1. Stokkermans, A., Chakrabarti, A., Subramanian, K., Wang, L., Yin, S., Moghe, P., Steenbergen, P., Mönke, G., Hiiragi, T., Prevedel, R., Mahadevan, L., & Ikmi, A. (2022). Muscular hydraulics drive larva-polyp morphogenesis. Current biology, 32(21), 4707–4718.e8.LINKPress release
  2. Korotkevich, E., & Hiiragi, T. (2022). Major construction entails major demolition. Developmental cell, 57(11), 1311–1313.LINK
  3. Ichikawa, T., Zhang, H. T., Panavaite, L., Erzberger, A., Fabrèges, D., Snajder, R., Wolny, A., Korotkevich, E., Tsuchida-Straeten, N., Hufnagel, L., Kreshuk, A., & Hiiragi, T. (2022). An ex vivo system to study cellular dynamics underlying mouse peri-implantation development. Developmental Cell, 57(3), 373–386.e9.LINKPress release
  4. Kim, E., Sorokin, L., & Hiiragi, T. (2022). ECM-integrin signalling instructs cellular position sensing to pattern the early mouse embryo. Development, 149(1), dev200140.LINK


  1. Yang, Q., Xue, S. L., Chan, C. J., Rempfler, M., Vischi, D., Maurer-Gutierrez, F., Hiiragi, T., Hannezo, E., & Liberali, P. (2021). Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology, 23(7), 733–744.LINK
  2. Roffay, C., Chan, C. J., Guirao, B., Hiiragi, T., & Graner, F. (2021). Inferring cell junction tension and pressure from cell geometry. Development, 148(18), dev192773.LINK


  1. Chan, C. J., & Hiiragi, T. (2020). Integration of luminal pressure and signalling in tissue self-organization. Development, 147(5), dev181297.LINK


  1. Ryan, A. Q., Chan, C. J., Graner, F., & Hiiragi, T. (2019). Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation. Developmental Cell, 51(6), 684–697.e4.LINK
  2. Niwayama, R., Moghe, P., Liu, Y. J., Fabrèges, D., Buchholz, F., Piel, M., & Hiiragi, T. (2019). A Tug-of-War between Cell Shape and Polarity Controls Division Orientation to Ensure Robust Patterning in the Mouse Blastocyst. Developmental Cell, 51(5), 564–574.e6.LINK
  3. Chan, C. J., Costanzo, M., Ruiz-Herrero, T., Mönke, G., Petrie, R. J., Bergert, M., Diz-Muñoz, A., Mahadevan, L., & Hiiragi, T. (2019). Hydraulic control of mammalian embryo size and cell fate. Nature, 571(7763), 112–116.LINK


  1. Zhang, H. T., & Hiiragi, T. (2018). Symmetry Breaking in the Mammalian Embryo. Annual Review of Cell and Developmental Biology, 34, 405–426.LINK
  2. Reichmann, J., Nijmeijer, B., Hossain, M. J., Eguren, M., Schneider, I., Politi, A. Z., Roberti, M. J., Hufnagel, L., Hiiragi, T., & Ellenberg, J. (2018). Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science, 361(6398), 189–193.LINK
  3. Kim, E., Korotkevich, E., & Hiiragi, T. (2018). Coordination of Cell Polarity, Mechanics and Fate in Tissue Self-organization. Trends in Cell Biology, 28(7), 541–550.LINK


  1. Chan, C. J., & Hiiragi, T. (2017). Keeping in Touch to Differentiate. Developmental Cell, 43(2), 113–114.LINK
  2. Chan, C. J., Heisenberg, C. P., & Hiiragi, T. (2017). Coordination of Morphogenesis and Cell-Fate Specification in Development. Current Biology, 27(18), R1024–R1035.LINK
  3. Veldhuis, J. H., Ehsandar, A., Maître, J. L., Hiiragi, T., Cox, S., & Brodland, G. W. (2017). Inferring cellular forces from image stacks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1720), 20160261.LINK
  4. Korotkevich, E., Niwayama, R., Courtois, A., Friese, S., Berger, N., Buchholz, F., & Hiiragi, T. (2017). The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo. Developmental Cell, 40(3), 235–247.e7.LINK


  1. Maître, J. L., Turlier, H., Illukkumbura, R., Eismann, B., Niwayama, R., Nédélec, F., & Hiiragi, T. (2016). Asymmetric division of contractile domains couples cell positioning and fate specification. Nature, 536(7616), 344–348.LINK
  2. Strnad, P., Gunther, S., Reichmann, J., Krzic, U., Balazs, B., de Medeiros, G., Norlin, N., Hiiragi, T., Hufnagel, L., & Ellenberg, J. (2016). Inverted light-sheet microscope for imaging mouse pre-implantation development. Nature Methods, 13(2), 139–142.LINK


  1. de Medeiros, G., Norlin, N., Gunther, S., Albert, M., Panavaite, L., Fiuza, U. M., Peri, F., Hiiragi, T., Krzic, U., & Hufnagel, L. (2015). Confocal multiview light-sheet microscopy. Nature Communications, 6, 8881.LINK
  2. Dietrich, J. E., Panavaite, L., Gunther, S., Wennekamp, S., Groner, A. C., Pigge, A., Salvenmoser, S., Trono, D., Hufnagel, L., & Hiiragi, T. (2015). Venus trap in the mouse embryo reveals distinct molecular dynamics underlying specification of first embryonic lineages. EMBO reports, 16(8), 1005–1021.LINK
  3. Maître, J. L., Niwayama, R., Turlier, H., Nédélec, F., & Hiiragi, T. (2015). Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nature Cell Biology, 17(7), 849–855.LINK


  1. Ohnishi, Y., Huber, W., Tsumura, A., Kang, M., Xenopoulos, P., Kurimoto, K., Oleś, A. K., Araúzo-Bravo, M. J., Saitou, M., Hadjantonakis, A. K., & Hiiragi, T. (2014). Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nature Cell Biology, 16(1), 27–37.LINK


  1. Wennekamp, S., Mesecke, S., Nédélec, F., & Hiiragi, T. (2013). A self-organization framework for symmetry breaking in the mammalian embryo. Nature Reviews. Molecular Cell Biology, 14(7), 452–459.LINK


  1. Courtois, A., Schuh, M., Ellenberg, J., & Hiiragi, T. (2012). The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. The Journal of Cell Biology, 198(3), 357–370.LINK
  2. Lavial, F., Bessonnard, S., Ohnishi, Y., Tsumura, A., Chandrashekran, A., Fenwick, M. A., Tomaz, R. A., Hosokawa, H., Nakayama, T., Chambers, I., Hiiragi, T., Chazaud, C., & Azuara, V. (2012). Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development. Genes & Development, 26(13), 1445–1458.LINK
  3. Groner, A. C., Tschopp, P., Challet, L., Dietrich, J. E., Verp, S., Offner, S., Barde, I., Rodriguez, I., Hiiragi, T., & Trono, D. (2012). The Krüppel-associated box repressor domain can induce reversible heterochromatization of a mouse locus in vivo. The Journal of Biological Chemistry, 287(30), 25361–25369.LINK


  1. Honda, H., Motosugi, N., Nagai, T., Tanemura, M., & Hiiragi, T. (2008). Computer simulation of emerging asymmetry in the mouse blastocyst. Development, 135(8), 1407–1414.LINK
  2. Bauer, T., Motosugi, N., Miura, K., Sabe, H., & Hiiragi, T. (2008). Dynamic rearrangement of surface proteins is essential for cytokinesis. Genesis, 46(3), 152–162.LINK


  1. Dietrich, J. E., & Hiiragi, T. (2007). Stochastic patterning in the mouse pre-implantation embryo. Development, 134(23), 4219–4231.LINK


  1. Hiiragi, T., Alarcon, V. B., Fujimori, T., Louvet-Vallee, S., Maleszewski, M., Marikawa, Y., Maro, B., & Solter, D. (2006). Where do we stand now? Mouse early embryo patterning meeting in Freiburg, Germany (2005). The International Journal of Developmental Biology, 50(7), 581–587.LINK
  2. Hiiragi, T., Louvet-Vallée, S., Solter, D., & Maro, B. (2006). Does prepatterning occur in the mouse egg?. Nature, 442(7099), E3–E4.LINK
  3. Motosugi, N., Dietrich, J. E., Polanski, Z., Solter, D., & Hiiragi, T. (2006). Space asymmetry directs preferential sperm entry in the absence of polarity in the mouse oocyte. PLoS Biology, 4(5), e135.LINK


  1. Motosugi, N., Bauer, T., Polanski, Z., Solter, D., & Hiiragi, T. (2005). Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes & Development, 19(9), 1081–1092.LINK


  1. Hiiragi, T., & Solter, D. (2004). First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature, 430(6997), 360–364.LINK