劉 恩豪(Enhao Liu)
| Position | 特定研究員 |
|---|---|
| 研究グループ | 平岡グループ |
| Research Field | トポロジカルデータ解析 |
| 受賞 | Best Poster Award, ICMMA2022 (2022) |
| ORCID | https://orcid.org/0009-0009-3592-2228 |
| Personal Website | https://sites.google.com/view/enhaoliu |
| 着任日 | 2025/10/01 |
研究概要
My research area is applied topology, with a focus on topological data analysis (TDA). TDA studies datasets through their underlying shape, allowing us to detect topological features and encode them in concise descriptors—such as persistence diagrams/barcodes and mapper graphs—that are useful for inference and learning.
I currently focus on persistent homology, one of the main tools in TDA. My work draws on the representation theory of algebras, probability, and statistics. In the standard one-parameter context, I used to investigate applying the persistent homology theory to high-dimensional, low-sample-size data in some practical and specified settings, motivated by the single-cell RNA sequencing data analysis. In generalized persistent homology (e.g., multiparameter persistence), data analysis is substantially harder than in the one-parameter case because of algebraic complications. I have developed both theoretical and computational aspects for studying some invariants of persistent homology, which are closely related to the algebraic (homological) approximation of the persistent homology obtained. I am continuing to develop this line of work.
略歴
2025年京都大学大学院理学研究科博士後期課程修了(専門:トポロジカルデータ解析)。2025年10月より京都大学高等研究院ヒト生物学高等研究拠点(ASHBi)特定研究員。トポロジー的手法を用いた複雑データ解析の数学的手法の開発に関心を持ち、研究を行っている。
論文
Yasuaki Hiraoka, Yusuke Imoto, Shu Kanazawa, Enhao Liu. Curse of Dimensionality on Persistence Diagrams. Foundations of Data Science. 2025. doi: 10.3934/fods.2025008